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The structures of multiplets in one- and two-dimensional NMR i
spectra can be simplified by recursive deconvolution in the fre- c = E ab, . 2]
quency domain. Deconvolution procedures are described for in- ' "o '
phase and antiphase doublets of delta functions. Recursive sim-
plification is illustrated by applications to double-quantum-filtered . i .
correlation spectra (DQF-COSY) and selective correlation spectra We shall refer to the operation which allows one. to derive
(soft-COSY). Coupling constants can be measured reliably even if ~the arraya from the knowledge ob andc asdeconvolutionAs
signals of opposite signs lead to partial cancellation. o 1900 academic ~ ShOWN by Bracewell{0), this can be expressed as

Press
Key Words: deconvolution of multiplets; correlation spectros- K—1
copy (COSY); cross-peak multiplets. a = by(c, — 2 ab, ) 3]
jPk=j)

j=0

The structure of multiplets in one- and two-dimensional
NMR spectra contains a wealth of information about scalar anH
dipolar couplings. The coupling constants can be determing
by deconvolution in the frequency or in the time domdir3),
by maximum entropy technique$+6), or by taking advantage
of properties of trigonometric functiong)( In this paper, we
shall focus on frequency-domain analys8, (pursuing the
work by Huber and Bodenhause®).(Some of the difficulties
encountered in determining the inverse of convolution have
been overcome and the criteria for the success of simplification )
have been improved. and an antiphase doublet by another atvay

The convolution product of two functiorfsand g may be )
defined as follows: +1, 1=0

b=1-1 i=m [5]
0, elsewhere.

This equation can be verified by substitution into Eq. [2]. W

[l only consider multiplets that are composed of in-pha:
d antiphase doublets. An in-phase doublet of delta functio
can be represented by an arfay

+1, i=0
bj=4+1, i=m [4]
0, elsewhere

h(x) = J f(u)g(x — u)du. [1]  For such doublets, Eq. [3] can be simplified since there is on
— one nonzero element in the summation, so that we obtain f
in-phase doublets,

If the functions are discrete, the integral may be replaced by a
sum. Thus, convolution of two arrays= {a,, a, ..., a.}
andb = {b,, by, ..., b} gives an arrayc = {cg, Cy, ...,
Cn:m} CONtainingn + m + 1 elements, where

ak = Ck - ak—m! [6]
and for antiphase doublets,

' _ _ o a = Cy+ & [7]
' This work was carried out in part at the Center for Interdisciplinary

Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East .
Paul Dirac Drive, Tallahassee, FL 32310, Thus each point of the deconvoluted spectrum can be col

2To whom correspondence should be addressed. Geoffrey.Bodenhaus@i@€d by taking the sum or difference of only two numbers. |
ens.fr. the case of in-phase doublets we obtain
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(a) Simplification of an in-phase doublet by asymmetrical deconvolution from left to right. The deconvoluted spgctambe separated into a

segment; that contains the simplified spectrum andharginal domainS}, that should not contain any signals if deconvolution is successful. (b) Deconvoluti
according to Eq. [8]. (c) Deconvolution according to the recursive formula of Eq. [6]. Note that the two approaches are equivalent. (d—f) Decabtalogd
by moving the arraya from right to left.

p
A= Cc— Cem+ Ceozm— Croam. .. = > (—=1)'Coim,  [8]
i=0

wherep = k/m. For antiphase doublets we have

p
A= Cc+ Cem+ Ceozm+ Ceozm. .. = > Cioim
i=0

For the in-phase case, Eq. [8] can be rewritten,

k 1,
Q= E dicei, di=1{-1,
i=0 0,

while for the antiphase case

1;

K
Q= E dcc, di= {0
i=0 ’

[9]
i=0,2m, 4m, 6m, . ..
i=m,3m, 5m, ...
elsewhere,

[10]
of Eq. [9] we obtain
i=0,m, 2m, 3m, ...
elsewhere. [11]

with an arrayd that has the form of a series of delta function:
with alternating signs+ — + — - - ] separated by a distance
m. This spacingm corresponds to the trial valug of the
(as yet unknown) splitting. Deconvolution of antiphase multi
plets requires a series of delta functions with the same sig
[+ + + + -], also separated by a distanoe Note that,
although the arrag only comprises + 1 elements, Egs. [10]
and [11] yield an infinite arrag. The deconvoluted spectrum
may be expressed as

k
Si= E disci»

i=0

(12]

wheres represents an experimental spectrum withr m + 1
elements andl is one of the infinite arrays of delta functions
defined above. If the trial splitting* corresponds to a trué
splitting in the spectrum, the resulting arr&y should have a
simplified structure in comparison with the original spectisim
For any value ofJ*, the lastm elements will be called the
marginal partS;, while the beginning of the arrag’ will be
referred to asruncated arrayS;. If deconvolution is successful
and leads to a simplified structurg;, should contain only
zeroes, as illustrated in Fig. 1a. The raw spectaisiconvo-

Thus the deconvolution of in-phase multiplets can be achievieded with an arrayd defined in Eq. [10], which is moved from
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FIG. 2. (a) Shifting and summation of deconvoluted spe8randS’, resulting inS, which can be separated into a central segn$tihat contains the
simplified spectrum, and twmarginal domainsS;, and S, that should not contain any signals if deconvolution is successful. (b, ¢) Schemes highlighting
equivalence of the asymmetrical and symmetrical approaches to deconvolution.

left to right with respect to the spectrum, so that the produgtore satisfactoryg), but the two-step procedure appears to b

can be calculated point-by-point. At the beginning of theasier to implement in practice. Moreover, the latter allows or

processs is simply copied intoS'. The further the array of to test the symmetry o5/ or S{ separately (see below) to

delta functions moves to the right, the larger the number détermine to what extent the simplification is successful, whil

points belonging tos which affect the resulting arrays’. S is not appropriate for such an analysis since it is intrinsicall

Artifacts and noise will therefore be amplified from left tasymmetrical.

right. The smaller the splittingl*, the closer the spacing If deconvolution is successful, it should lead to a simplifi

between the delta functions in the arrdyand the more the cation of the spectrum. The simplest way to measure the exte

artifacts are amplified ir§'. To reduce these artifacts to aof simplification is to consider the sum of the absolute value

minimum, we limit deconvolution to a narrow spectral windovef all points of S’ (9), which will be called theglobal inte-

that contains the signal. When multiplets have complex strugrated absolute valudbs(S'):

tures, the best results will be obtained for deconvolution of the

largest splitting. We shall see later that this approach has other K

advantages. Abs(S') = > |S|. [13]
When the deconvolution process is started from the right- i=0

hand side of the spectruri.i), the artifacts and noise increase

from right to left (see Figs. 1d-1f). We shall use double primegs reaches a minimum value when deconvolution is successf
to label arrays obtained in this way. As shown in Fig. 2, thgy many cases, it is advantageous to limit the integration to the Iz
arraysS' and S’ have to be displaced relative to each othgf, glements o8, i.e., to themarginal partS,,, in which case we
prior to summati(_)n 1_1). If deconvolution is successful (i-e-'may speak of thenarginal integrated absolute valuéibs(S,).
when J* = J) this displacement should be equal 16, as  Thjs should vanish if deconvolution is successful. In either cas

shown in Fig. 2. In the case of deconvolution of antiphasge integrals must be computed for all trial valuiés
doublets, the sign o8’ has to be inverted before summation.

Figure 3 illustrates the different approaches. The amplitudes
of the waves are proportional to the number of contributions

and thus to the amplitude of artifacts and noise. It is apparent a F % NS o 4
thatS has a uniform amplitude across the entire spectrum since 5o s

each point is made up of the same number of contributions. b | § { ! {8
This approach will be our method of choice unless specified

otherwise. Figure 3d was obtained by combining the best parts el L 5 A (s
of ' andS'. This alows one to minimize noise and artifacts, e .
but has the disadvantage of introducing a discontinuity be- S, S

tween the two halves of the multiplet. d } v !

In a private communication, Bothner-By proposd@®)(to FIG. 3. Schematic representation of artifacts with increasing and decrea
use an infinite array of delta functions:[| — + — + + — + ing amplitgdes appearing as a result of deconvolution (a) from left tg right ar
— -] to deconvolute in-phase doublets. Likewise, antiphaé*it?n frl‘i’f?;d”gh;é?n'fn:‘-C;:eb‘:eézzxot’i‘;de;ef?::‘tsf]zarr‘r?asr’f it:;t;g:;';;;ze
doublets can be deconvoluted by an_lnfl!'nte array [+ ++ S’r’ﬂ.FEc) Spegtrum obtained by syn?metrical deconvolutiogn. The central regic
_____ ]. It turns out that the application of these methods is equal to the sum 8 andS!. (d) Juxtaposition of the first half & and
directly leads toS; (see Fig. 3c). This approach is formallythe second half o8;.
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J=4Hz

FIG. 4. (a) Simulated antiphase doublet and (b) in-phase doublet, both with a true splitting Hz and a linewidth at half-height of 0.5 Hz. (c) Global
integrated absolute value AI] of Eq. [13] (continuous line) and marginal integrated absolute valueSpg¢lotted line) calculated after deconvolution of
the antiphase doublet in (a) with antiphase doublets of delta functions as a function of the trial spiitfiige first minimum from the right of both absolute
value functions in (c) gives the correct coupling constéint= J = 4 Hz. Arrows indicate four values @ for which the deconvoluted spectra are shown in
(e). The vertical dotted lines in (e) indicate the limits betweerStendS|, domains. Whed* # J, residual antiphase features appear in (). Note the appearar
of misleading secondary minima in (c) for submultipl&s= J/n. (d) Global integrated absolute value AB9((continuous line) and marginal integrated absolute
value AbsE;,) (dotted line) calculated after deconvolution of the in-phase doublet (b) with in-phase doublets of delta functions sepaFatdthdyfirst
minimum from the right of both functions in (d) gives the correct coupling constant J = 4 Hz. Arrows indicate values af* for which the deconvoluted
spectra are shown in (f). The vertical dotted lines in (f) indicate the limits betwee§ tred S, domains. Note the presence of secondary minima in (d) fo
odd submultiples)* = J/(2n + 1).

Figure 4 shows some simulated examples of deconvolution
of in-phase and antiphase doublets. The global and marginal
functions Abs§’) and AbsE;,) are drawn with plain and dotted
lines in Figs. 4c and 4d. For an antiphase splitting, the marginal
function Abs(/,) vanishes fold* = J and for submultiples*
= J/n. The global function Abst’) merely shows minima at
these positions. The lowest minimum corresponds to the cor- e
rect splitting. However, simply taking the lowest point of the o 1
function is fraught with danger, especially when the spectrum b
has several splittings. Moreover, the linewidth affects the out-
come. For an in-phase splitting, minima appear not only for the
true splittingJ* = J, but also for odd subharmonick =
J/(2n + 1).

Figure 5 illustrates what happens if one attempts to decon-
volute an antiphase splitting with in-phase delta functions and . :
vice versa. If one searches for antiphase structures in a spec- o 1 2 3 4 5 6 7 J*
trum that contains only an in-phase doublet, one does NOgiG. 5. (a) Global integrated absolute value A8§((continuous line) and
encounter any disturbing propertie®).(The reverse situation marginal integrated absolute value ASS| (dotted line) calculated after at-

must however be considered with caution, as can be appréeipting to deconvolute the antiphase doublet of Fig. 4a by an in-pha
ated in Fig. 5a doublet of delta functions. Misleading minima appear at even submultiples

. . . = J/(2n). (b) Functions Abs§") (continuous line) and AbSY,) (dotted line)
As an alternative to integrated absolute value functions, tt:"gculated after attempting to deconvolute the in-phase doublet of Fig. 4b |

success of deconvolution of multiplets can be ascertained UsiaGintiphase doublet of delta functions. No misleading responses appear in
symmetry properties. Prior to symmetry mapping, the mutase.
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tiplets must be phased correctly and their centers identified a
moved to the center of the window using appropriate symmetry
criteria 8). Deconvolution is then carried out using Eq. [3].
The deconvoluted structure can be compared with its symme-|
try-related image using a normalized scalar prodRethich

for an n-dimensional vectoR is defined by

- 250 RRm-i)
I REIIIRE)

P

[14] -«

Two situations give rise to simplified multiplets. In the first | .

case,P may reach+1 when the deconvoluted multiplet is ! H B
symmetrical with respect to its center. This occurs when tmgm N o5
5 1

simplified structure contains only in-phase doublets or when h A AN
the number of antiphase splittings is even. In the second cas®, o 15 % 5 10 15
P reaches—1 since the signal amplitudes have opposite signg m ¢
relative to the center of the multiplet. This occurs when an odd V /j

number of antiphase splittings is present. In this case, we|| :
systematically inverted the sign &f(J*) to facilitate both

visual inspection and automatic peak-picking. N 1 [+
Inspection of Figs. 4 and 5 shows that, when starting frogs 05

the right by decreasing the trial splitting¥ from an upper

limit, the first extremum corresponds to the largest splitting.%, 5 10 15 % 5 10 15

The combination of in-phase and a_ntlphase Sp|lttlng§ Iegds tIQ—IG. 7. (a) Experimental multiplet (3% 45 Hz) stemming from magneti-

complgx patterns of e_xt_resz)(_ T_helr structure co_ntams IN- 2 ation transfer from X to M irtis-2-phenylcyclopropanecarboxylic acid ethyl ester
formation on all remaining splittings. Although visual intery), taken from a DQF-COSY spectrum with band-selective excitation. (b
pretation is often possible (see below), attemps to make tResults of five different deconvolution procedures combined with three differe
analysis of such patterns automatic ran into difficulties. In thggteria for the success of deconvolution. The upper halves of the frames show

approach we propose, only the position of the first extremuﬂ?bal and marginal integrated absolute value functions (continuous and dot
lines, respectively). The lower halves of the frames give the symmetry of tt

Wh!Ch corresponds to the_largeSt Sp|lttlng in the m_”'_tlplet’ feconvoluted multiplets. The arrays of delta functions used for deconvolution &
utilized. In order to determine the other (smaller) splittings, thegicated symbolically: (b) antiphase square, (c) antiphase doublet imthe
simplified structure is used as starting material for the nestnension, (d) antiphase doublet in tie dimension, (e) in-phase doublet in the
deconvolution cycle. This allows one to measure each splittimg dimension, and (f) in-phase doublet in the dimension. The vertical lines
in complex multiplets in a recursive process. This approach i‘?@cate the true couplings: the active coupling is 7:850.05 Hz in both

.. . . imensions, as can be seen in (b—d); the passive couplings correspond 1o 5.2
the additional advantage that one can improve the quality of 85 and 8.65- 0.05 Hz in the verticab, dimension, as can be appreciated in (e),

multiplets in each intermediate result by symmetrization.  and to 5.60+ 0.05 and 9.35- 0.05 Hz in the horizontab, dimension, as can be

Although the determination of the largest splitting seems tetermined in (f). The vertical lines show the positions of the true splittings. Th
be reliable, structures containing both in-phase and antiph&sgers correspond to the half-widths at 99% of the height of the relevant peaks
doublets represent a challenge. When a cross-peak multifiggymmetry functions.

contains equal in-phase and antiphase couplings, only Osnpefitting corresponding to twice the coupling constant is ok

served. This fundamental ambiguity makes it impossible t
distinguish an antiphase doublet with an apparent splittihg -

* Fxpy Jrxey from two splittings J, one in-phase and one antiphase. Ir
DQF-COSY :|:+ —}*Ax ® |:+ +:|J*AP1® o Fapy ® two-dimensional spectroscopy, this is unlikely to occur in bot
- 4+ + o+ + 4 " dimensions, but when it does, the apparent active couplin
b o measured in the two dimensions do not matt8).(
i*A{ J*xpy B Xpi- In order to apply deconvolution to cross peaks in band-selecti
soft-COSY : [ } T AX ® [ 1]* APL® J*ap, ® .. Versions of DQF-COSYI(4, 19 and soft-COSY 16) (see Fig. 6),
-t M + it is necessary to modify the criteria for the success of deconv

lution. For DQF-COSY cross peaks, deconvolution is simpl

FIG. 6. Multiplet structures of (a) DQF-COSY and (b) soft-COSY crossy p“ed Separately to each row and column of the two-dimensior
peaks presented as convolution products of two-dimensional arrays of delgl

functions. The square array with alternating signs is due to the active couplir%,ray‘ For soft-COSY mU|tIp|etS’ the search has to be conduct

while each passive spin gives rise to a rectangular array with an in-phadgultaneously in both frequency dimensions. Details are give
structure. elsewhere about the marginal integrated absolute v&ueT¢
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FIG. 8. (a) In-phase multiplet (2% 37 Hz) derived from Fig. 7a after
deconvolution of the active splitting witl* = 7.85 Hz inboth dimensions.
The deconvolution was started from each of the four corners, and the results
were superimposed. (b—d) Results of three different deconvolution procedures

combined with three different criteria for the success of deconvolution. The
upper halves of the frames show the global and marginal integrated absolute
value functions (continuous and dotted lines, respectively). The lower halves
of the frames give the symmetry of the deconvoluted multiplets. The arrays of

delta functions used for deconvolution are indicated symbolically: (b) ang
tiphase square, (c) in-phase doublet in thedimension, and (d) in-phase

doublet in thew, dimension. As expected, no extrema can be seen in (b), since
the antiphase pattern has been removed. The absolute value functions in (c) ar}

(d) look similar to those of Figs. 7e and 7f, except that the extrema at odd
submultiples of the active coupling have disappeared. The vertical lines show
the positions of the true passive splittings.

obtain an accurate measure of symmetry, cross-peak multiplets

first must be phased correctly and their centers must be identifiedd
(17). They can then be compared with th€ir symmetry-related
image using a normalized scalar product which is defined for an

n X m matrix R:

-1 -1
250 2% RjRn-iym-j)

P [15] e

ST -1 p2 -1 -1 p2 :
\s‘Ein:o Ejm:o Rij ‘25 Ejmzo R(n—i)(m—j)

Ideal deconvolution leads ® = +1 except if there is an even

number of antiphase splittings in one dimension, and an odd
number in the other, in which cageshould reach-1.

Figures 7 and 8 illustrate the efficiency of deconvolution of £
,

experimental multiplets taken from a band-selective DQF- &

COSY spectrum of a cyclopropane derivative:

8a. The resulting in-phase multiplet is almost ideal, so that tt
determination of the in-phase splittings is straightforward.

Figure 9 illustrates deconvolution of another multiplet of the
same cyclopropane derivative. In this fully automated recursiy
analysis, only symmetry was used as a criterion of simplificatiol

0 2 4 6 10
W -]
]
0 2 4 6 10

HA HX HM
Ph

HK
I

O\/

FIG. 9. (a) Experimental multiplet (30 28 Hz) stemming from magneti-
zation transfer from X to K irtis-2-phenylcyclopropanecarboxylic acid ethyl ester
(1), taken from a DQF-COSY spectrum with band-selective excitation. (b
Recursive simplification obtained by deconvolution. (g—k) Measure of symmet
after deconvolution with an antiphase square (top third of each frame), with
passive in-phase doublet in the vertieal domain (middle third), and with an
in-phase doublet in the horizonta} dimension (bottom third). The vertical lines
indicate extrema corresponding to splittings used in the following deconvolutic
step. The passive splittings correspond to 8:80.05 Hz (g) and 7.9¢: 0.10 Hz

The result of deconvolution in both dimensions of the experimefy in the verticaks, dimension, and to 7.5 0.05 Hz (i) and 5.6@: 0.05 Hz (j)
tal multiplet of Fig. 7a by the antiphase splitting is shown in Figa the horizontaks, dimension. The active splitting (k) is 4.95 0.05 Hz.
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FIG. 10. (a) Soft-COSY multiplet (35< 61 Hz) correlating thé' and+y' protons (in the verticab, and horizontal, dimensions, respectively) of prolihe
in cyclo-(L-Pra™-L-Pro’-p-Prd’) (1), symmetrized with respect to i@, axis. (b) Measure of symmetry after deconvolution with an antiphase square (top thir
with an antiphase doublet in the vertiea] dimensions (middle third), and with an antiphase doublet in the horizentdimension (bottom third). The dotted
lines correspond to a deconvolution of the raw multiplet (not shown), while the continuous lines result from deconvolutid@, efytmmetrized multiplet. All
six functions give an active coupling constant of 10.25 Hz. (c) Multiplet after deconvolution of the active coupling, symmetrized with respectast{d)
Two-dimensional map of the measure of symmetry after deconvolution of the passive splittings. The arrows indicate the positions of the miniaxdodise to
displacement vectors. Note the presence of local minima at submultiples of the displacement vectors. The contours were taken at 0.4, 0.5, (e6,hand
Successive deconvolution of the splittings due to the sping®, 8¢, andg', followed after each step b§, symmetrization. Contours are drawn20 and
+70% of the maximum peak height. In addition to the coupling constants indicated in the coupling nétyorle(can determine smdl splittingsJ(8', 8°) =
—0.50 Hz andJ(§', B) = 0.45 Hz. The uncertainty was 0.05 Hz.

When scanned from the right-hand side, the maxima of the up, components of the displacement vector. In order to speed
permost functions in Figs. 9g—9k that are higher than 0.5 are usenputation, deconvolution is carried out in two consecutiv
in the next step of deconvolution. If no maxima are foundJfor steps. A first search is made at low resolution (in steps of O
> 0.5 Hz, the process is stopped. The result is the single peakHa) over a range-18 < J* < 18 Hz inw, and 0< J* <
Fig. 9f. In the vertical dimension, the multiplet structure is s&8 Hz in w,, followed by a refinement in steps of 0.05 Hz in
simple that one could determine the splittings by visual inspectidhe vicinity of the extrema after the digital resolution has bee
In the horizontal dimension, on the other hand, cancellation mal@thanced by trigonometric interpolation. Soft-COSY mul
such estimates hazardous. Deconvolution deals with both casglets are less likely to suffer from cancellation effects thal
equally well. DQF-COSY multiplets. This means that one may deviate frot
In soft-COSY multiplets, two independent variables must ki@e rule requiring one to search for the largest coupling firs
determined for each passive spin, corresponding tathend We therefore propose to start with the deconvolution of th
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