
Determination of Coupling Constants by Deconvolution
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pectra can be simplified by recursive deconvolution in the fre-
uency domain. Deconvolution procedures are described for in-
hase and antiphase doublets of delta functions. Recursive sim-
lification is illustrated by applications to double-quantum-filtered
orrelation spectra (DQF-COSY) and selective correlation spectra
soft-COSY). Coupling constants can be measured reliably even if
ignals of opposite signs lead to partial cancellation. © 1999 Academic

ress

Key Words: deconvolution of multiplets; correlation spectros-
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The structure of multiplets in one- and two-dimensio
MR spectra contains a wealth of information about scalar
ipolar couplings. The coupling constants can be determ
y deconvolution in the frequency or in the time domain (1–3),
y maximum entropy techniques (4–6), or by taking advantag
f properties of trigonometric functions (7). In this paper, w
hall focus on frequency-domain analysis (8), pursuing the
ork by Huber and Bodenhausen (9). Some of the difficultie
ncountered in determining the inverse of convolution h
een overcome and the criteria for the success of simplific
ave been improved.
The convolution product of two functionsf and g may be

efined as follows:

h~ x! 5 E
2`

`

f~u! g~ x 2 u!du. [1]

f the functions are discrete, the integral may be replaced
um. Thus, convolution of two arraysa 5 { a0, a1, . . . , an}
ndb 5 { b0, b1, . . . , bm} gives an arrayc 5 { c0, c1, . . . ,
n1m} containing n 1 m 1 1 elements, where

1 This work was carried out in part at the Center for Interdisciplin
agnetic Resonance, National High Magnetic Field Laboratory, 1800
aul Dirac Drive, Tallahassee, FL 32310.

2 To whom correspondence should be addressed. Geoffrey.Bodenha
ns.fr.
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ci 5 O
k50

akbi2k. [2]

We shall refer to the operation which allows one to de
he arraya from the knowledge ofb andc asdeconvolution.As
hown by Bracewell (10), this can be expressed as

ak 5 b0
21~ck 2 O

j50

k21

ajbk2j!. [3]

This equation can be verified by substitution into Eq. [2].
hall only consider multiplets that are composed of in-p
nd antiphase doublets. An in-phase doublet of delta func
an be represented by an arrayb,

bi 5 H11, i 5 0
11, i 5 m

0, elsewhere
[4]

nd an antiphase doublet by another arrayb,

bi 5 H11, i 5 0
21, i 5 m

0, elsewhere.
[5]

or such doublets, Eq. [3] can be simplified since there is
ne nonzero element in the summation, so that we obtai

n-phase doublets,

ak 5 ck 2 ak2m, [6]

nd for antiphase doublets,

ak 5 ck 1 ak2m. [7]

Thus each point of the deconvoluted spectrum can be
uted by taking the sum or difference of only two numbers

he case of in-phase doublets we obtain

st

n@
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134 JEANNERAT AND BODENHAUSEN
ak 5 ck 2 ck2m 1 ck22m 2 ck23m · · ·5 O
i50

p

~21! ick2im, [8]

herep # k/m. For antiphase doublets we have

ak 5 ck 1 ck2m 1 ck22m 1 ck23m · · ·5 O
i50

p

ck2im. [9]

or the in-phase case, Eq. [8] can be rewritten,

ak 5 O
i50

k

dick2i, di 5 H 1, i 5 0, 2m, 4m, 6m, . . .
21, i 5 m, 3m, 5m, . . .

0, elsewhere,

[10]

hile for the antiphase case of Eq. [9] we obtain

ak 5 O
i50

k

dick2i, di 5 H1, i 5 0, m, 2m, 3m, . . .
0, elsewhere. [11]

hus the deconvolution of in-phase multiplets can be achi

FIG. 1. (a) Simplification of an in-phase doublet by asymmetrical de
egmentS9t that contains the simplified spectrum and amarginal domainS9m tha
ccording to Eq. [8]. (c) Deconvolution according to the recursive formula
y moving the arraya from right to left.
d

ith an arrayd that has the form of a series of delta functi
ith alternating signs [1 2 1 2 . . .] separated by a distan
. This spacingm corresponds to the trial valueJ* of the

as yet unknown) splitting. Deconvolution of antiphase m
lets requires a series of delta functions with the same
1 1 1 1 . . .], also separated by a distancem. Note that
lthough the arraya only comprisesn 1 1 elements, Eqs. [10
nd [11] yield an infinite arrayd. The deconvoluted spectru
ay be expressed as

S9k 5 O
i50

k

disk2i, [12]

heres represents an experimental spectrum withn 1 m 1 1
lements andd is one of the infinite arrays of delta functio
efined above. If the trial splittingJ* corresponds to a trueJ
plitting in the spectrum, the resulting arrayS* should have
implified structure in comparison with the original spectrus.
or any value ofJ*, the last m elements will be called th
arginal partS9m while the beginning of the arrayS* will be

eferred to astruncated arrayS9t. If deconvolution is successf
nd leads to a simplified structure,S9m should contain onl
eroes, as illustrated in Fig. 1a. The raw spectrums is convo-

uted with an arrayd defined in Eq. [10], which is moved fro

volution from left to right. The deconvoluted spectrumS* can be separated into
ould not contain any signals if deconvolution is successful. (b) Deconvo
Eq. [6]. Note that the two approaches are equivalent. (d–f) Deconvolution obtained
con
t sh
of
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135DECONVOLUTION OF MULTIPLETS
eft to right with respect to the spectrum, so that the pro
an be calculated point-by-point. At the beginning of
rocess,s is simply copied intoS*. The further the array o
elta functions moves to the right, the larger the numbe
oints belonging tos which affect the resulting arrayS*.
rtifacts and noise will therefore be amplified from left

ight. The smaller the splittingJ*, the closer the spacin
etween the delta functions in the arrayd, and the more th
rtifacts are amplified inS*. To reduce these artifacts to
inimum, we limit deconvolution to a narrow spectral wind

hat contains the signal. When multiplets have complex s
ures, the best results will be obtained for deconvolution o
argest splitting. We shall see later that this approach has
dvantages.
When the deconvolution process is started from the r

and side of the spectrum (11), the artifacts and noise increa
rom right to left (see Figs. 1d–1f). We shall use double pri
o label arrays obtained in this way. As shown in Fig. 2,
rraysS* and S( have to be displaced relative to each o
rior to summation (11). If deconvolution is successful (i.e
hen J* 5 J) this displacement should be equal toJ*, as
hown in Fig. 2. In the case of deconvolution of antiph
oublets, the sign ofS( has to be inverted before summati
Figure 3 illustrates the different approaches. The amplit

f the waves are proportional to the number of contribut
nd thus to the amplitude of artifacts and noise. It is appa

hatShas a uniform amplitude across the entire spectrum
ach point is made up of the same number of contribut
his approach will be our method of choice unless spec
therwise. Figure 3d was obtained by combining the best
f S* andS(. This alows one to minimize noise and artifa
ut has the disadvantage of introducing a discontinuity

ween the two halves of the multiplet.
In a private communication, Bothner-By proposed (12) to

se an infinite array of delta functions [. . . 2 1 2 1 1 2 1
. . .] to deconvolute in-phase doublets. Likewise, antiph

oublets can be deconvoluted by an infinite array [. . . 1 1 1
2 2 . . .]. It turns out that the application of these meth

irectly leads toSt (see Fig. 3c). This approach is forma

FIG. 2. (a) Shifting and summation of deconvoluted spectraS* andS(, r
implified spectrum, and twomarginal domainsS9m andS0m that should not c
quivalence of the asymmetrical and symmetrical approaches to decon
ct
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ore satisfactory (8), but the two-step procedure appears to
asier to implement in practice. Moreover, the latter allows

o test the symmetry ofS9t or S0t separately (see below)
etermine to what extent the simplification is successful, w
t is not appropriate for such an analysis since it is intrinsic
ymmetrical.
If deconvolution is successful, it should lead to a simp

ation of the spectrum. The simplest way to measure the e
f simplification is to consider the sum of the absolute va
f all points of S* (9), which will be called theglobal inte-
rated absolute valueAbs(S*):

Abs~S9! 5 O
i50

k

uSiu. [13]

his reaches a minimum value when deconvolution is succe
n many cases, it is advantageous to limit the integration to th

elements ofS*, i.e., to themarginalpartS9m, in which case w
ay speak of themarginal integrated absolute value:Abs(S9m).
his should vanish if deconvolution is successful. In either c

he integrals must be computed for all trial valuesJ*.

lting inS, which can be separated into a central segmentSt that contains th
tain any signals if deconvolution is successful. (b, c) Schemes highligh
ution.

FIG. 3. Schematic representation of artifacts with increasing and dec
ng amplitudes appearing as a result of deconvolution (a) from left to righ
b) from right to left. The deconvoluted segmentsS9t andS0t that contain the
implified spectrum can be distinguished from the marginal domainsS9m and
0m. (c) Spectrum obtained by symmetrical deconvolution. The central r

t is equal to the sum ofS9t andS0t. (d) Juxtaposition of the first half ofS9t and
he second half ofS0t.
esu
on
vol
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136 JEANNERAT AND BODENHAUSEN
Figure 4 shows some simulated examples of deconvol
f in-phase and antiphase doublets. The global and mar

unctions Abs(S*) and Abs(S9m) are drawn with plain and dotte
ines in Figs. 4c and 4d. For an antiphase splitting, the mar
unction Abs(S9m) vanishes forJ* 5 J and for submultiplesJ*

J/n. The global function Abs(S*) merely shows minima a
hese positions. The lowest minimum corresponds to the
ect splitting. However, simply taking the lowest point of
unction is fraught with danger, especially when the spec
as several splittings. Moreover, the linewidth affects the
ome. For an in-phase splitting, minima appear not only fo
rue splitting J* 5 J, but also for odd subharmonicsJ* 5
/(2n 1 1).
Figure 5 illustrates what happens if one attempts to de

olute an antiphase splitting with in-phase delta functions
ice versa. If one searches for antiphase structures in a
rum that contains only an in-phase doublet, one does
ncounter any disturbing properties (8). The reverse situatio
ust however be considered with caution, as can be app
ted in Fig. 5a.
As an alternative to integrated absolute value functions

uccess of deconvolution of multiplets can be ascertained
ymmetry properties. Prior to symmetry mapping, the m

FIG. 4. (a) Simulated antiphase doublet and (b) in-phase doublet, b
ntegrated absolute value Abs(S*) of Eq. [13] (continuous line) and margin
he antiphase doublet in (a) with antiphase doublets of delta functions a
alue functions in (c) gives the correct coupling constantJ* 5 J 5 4 Hz. Ar
e). The vertical dotted lines in (e) indicate the limits between theS9t andS9m dom
f misleading secondary minima in (c) for submultiplesJ* 5 J/n. (d) Global in
alue Abs(S9m) (dotted line) calculated after deconvolution of the in-pha
inimum from the right of both functions in (d) gives the correct couplin

pectra are shown in (f). The vertical dotted lines in (f) indicate the limi
dd submultiplesJ* 5 J/(2n 1 1).
oth with a true splittingJ 5 4 Hz and a linewidth at half-height of 0.5 Hz. (c) Glo
al integrated absolute value Abs(S9m) (dotted line) calculated after deconvolution
s a function of the trial splittingJ*. The first minimum from the right of both absolu
rows indicate four values ofJ* for which the deconvoluted spectra are shown
ains. WhenJ* Þ J, residual antiphase features appear in (e). Note the appea
tegrated absolute value Abs(S*) (continuous line) and marginal integrated abso
se doublet (b) with in-phase doublets of delta functions separated byJ*. The first
g constantJ* 5 J 5 4 Hz. Arrows indicate values ofJ* for which the deconvolute
ts between theS9t andS9m domains. Note the presence of secondary minima in (d
al

al

r-

m
t-
e

n-
d
ec-
ot

ci-

e
ng
l-

FIG. 5. (a) Global integrated absolute value Abs(S*) (continuous line) an
arginal integrated absolute value Abs(S9m) (dotted line) calculated after a

empting to deconvolute the antiphase doublet of Fig. 4a by an in-p
oublet of delta functions. Misleading minima appear at even submultiplJ*

J/(2n). (b) Functions Abs(S*) (continuous line) and Abs(S9m) (dotted line)
alculated after attempting to deconvolute the in-phase doublet of Fig.
n antiphase doublet of delta functions. No misleading responses appea
ase.
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137DECONVOLUTION OF MULTIPLETS
oved to the center of the window using appropriate symm
riteria (8). Deconvolution is then carried out using Eq. [
he deconvoluted structure can be compared with its sym

ry-related image using a normalized scalar productP which
or an n-dimensional vectorR is defined by

P 5
¥ i50

n21 RiR~n2i !

Î¥ i50
n21 Ri

2 z ¥ i50
n21 R~n2i !

2 . [14]

wo situations give rise to simplified multiplets. In the fi
ase,P may reach11 when the deconvoluted multiplet
ymmetrical with respect to its center. This occurs when
implified structure contains only in-phase doublets or w
he number of antiphase splittings is even. In the second

reaches21 since the signal amplitudes have opposite s
elative to the center of the multiplet. This occurs when an
umber of antiphase splittings is present. In this case
ystematically inverted the sign ofP( J*) to facilitate both
isual inspection and automatic peak-picking.
Inspection of Figs. 4 and 5 shows that, when starting f

he right by decreasing the trial splittingJ* from an uppe
imit, the first extremum corresponds to the largest splitt
he combination of in-phase and antiphase splittings lea
omplex patterns of extrema (8). Their structure contains in
ormation on all remaining splittings. Although visual int
retation is often possible (see below), attemps to mak
nalysis of such patterns automatic ran into difficulties. In
pproach we propose, only the position of the first extrem
hich corresponds to the largest splitting in the multiple
tilized. In order to determine the other (smaller) splittings,
implified structure is used as starting material for the
econvolution cycle. This allows one to measure each spl

n complex multiplets in a recursive process. This approach
he additional advantage that one can improve the quality o
ultiplets in each intermediate result by symmetrization.
Although the determination of the largest splitting seem

e reliable, structures containing both in-phase and antip
oublets represent a challenge. When a cross-peak mu
ontains equal in-phase and antiphase couplings, only

FIG. 6. Multiplet structures of (a) DQF-COSY and (b) soft-COSY cr
eaks presented as convolution products of two-dimensional arrays o

unctions. The square array with alternating signs is due to the active cou
hile each passive spin gives rise to a rectangular array with an in-
tructure.
ry
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plitting corresponding to twice the coupling constant is
erved. This fundamental ambiguity makes it impossibl
istinguish an antiphase doublet with an apparent splittinJ

rom two splittings J, one in-phase and one antiphase
wo-dimensional spectroscopy, this is unlikely to occur in b
imensions, but when it does, the apparent active coup
easured in the two dimensions do not match (13).
In order to apply deconvolution to cross peaks in band-sele

ersions of DQF-COSY (14, 15) and soft-COSY (16) (see Fig. 6)
t is necessary to modify the criteria for the success of deco
ution. For DQF-COSY cross peaks, deconvolution is sim
pplied separately to each row and column of the two-dimens
rray. For soft-COSY multiplets, the search has to be cond
imultaneously in both frequency dimensions. Details are g
lsewhere about the marginal integrated absolute value (8). To

lta
g,
se

FIG. 7. (a) Experimental multiplet (323 45 Hz) stemming from magne
ation transfer from X to M incis-2-phenylcyclopropanecarboxylic acid ethyl es
I), taken from a DQF-COSY spectrum with band-selective excitation.
esults of five different deconvolution procedures combined with three diff
riteria for the success of deconvolution. The upper halves of the frames sh
lobal and marginal integrated absolute value functions (continuous and

ines, respectively). The lower halves of the frames give the symmetry o
econvoluted multiplets. The arrays of delta functions used for deconvolutio

ndicated symbolically: (b) antiphase square, (c) antiphase doublet in tv1

imension, (d) antiphase doublet in thev2 dimension, (e) in-phase doublet in

1 dimension, and (f) in-phase doublet in thev2 dimension. The vertical line
ndicate the true couplings: the active coupling is 7.856 0.05 Hz in both
imensions, as can be seen in (b–d); the passive couplings correspond to6
.05 and 8.656 0.05 Hz in the verticalv1 dimension, as can be appreciated in
nd to 5.606 0.05 and 9.356 0.05 Hz in the horizontalv2 dimension, as can b
etermined in (f). The vertical lines show the positions of the true splittings
rrors correspond to the half-widths at 99% of the height of the relevant pe

he symmetry functions.
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138 JEANNERAT AND BODENHAUSEN
btain an accurate measure of symmetry, cross-peak mul
rst must be phased correctly and their centers must be iden
17). They can then be compared with theirC2 symmetry-relate
mage using a normalized scalar product which is defined fo

3 m matrix R:

P 5
¥ i50

n21 ¥ j50
m21 RijR~n2i !~m2j !

Î¥ i50
n21 ¥ j50

m21 Rij
2 z ¥ i50

n21 ¥ j50
m21 R~n2i !~m2j !

2 . [15]

deal deconvolution leads toP 5 11 except if there is an eve
umber of antiphase splittings in one dimension, and an
umber in the other, in which caseP should reach21.
Figures 7 and 8 illustrate the efficiency of deconvolutio

xperimental multiplets taken from a band-selective D
OSY spectrum of a cyclopropane derivative:

I

he result of deconvolution in both dimensions of the experim
al multiplet of Fig. 7a by the antiphase splitting is shown in

FIG. 8. (a) In-phase multiplet (273 37 Hz) derived from Fig. 7a afte
econvolution of the active splitting withJ* 5 7.85 Hz inboth dimensions
he deconvolution was started from each of the four corners, and the r
ere superimposed. (b–d) Results of three different deconvolution proce
ombined with three different criteria for the success of deconvolution
pper halves of the frames show the global and marginal integrated ab
alue functions (continuous and dotted lines, respectively). The lower h
f the frames give the symmetry of the deconvoluted multiplets. The arra
elta functions used for deconvolution are indicated symbolically: (b)

iphase square, (c) in-phase doublet in thev1 dimension, and (d) in-pha
oublet in thev2 dimension. As expected, no extrema can be seen in (b),

he antiphase pattern has been removed. The absolute value functions in
d) look similar to those of Figs. 7e and 7f, except that the extrema a
ubmultiples of the active coupling have disappeared. The vertical lines
he positions of the true passive splittings.
ets
ed

n

d

f
-

-
.

etermination of the in-phase splittings is straightforward.
Figure 9 illustrates deconvolution of another multiplet of

ame cyclopropane derivative. In this fully automated recu
nalysis, only symmetry was used as a criterion of simplifica
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FIG. 9. (a) Experimental multiplet (303 28 Hz) stemming from magne
ation transfer from X to K incis-2-phenylcyclopropanecarboxylic acid ethyl es
I), taken from a DQF-COSY spectrum with band-selective excitation.
ecursive simplification obtained by deconvolution. (g–k) Measure of symm
fter deconvolution with an antiphase square (top third of each frame), w
assive in-phase doublet in the verticalv1 domain (middle third), and with a

n-phase doublet in the horizontalv2 dimension (bottom third). The vertical lin
ndicate extrema corresponding to splittings used in the following deconvo
tep. The passive splittings correspond to 8.806 0.05 Hz (g) and 7.906 0.10 Hz
h) in the verticalv1 dimension, and to 7.506 0.05 Hz (i) and 5.606 0.05 Hz (j)
n the horizontalv2 dimension. The active splitting (k) is 4.956 0.05 Hz.



W u
p us
i r
. ak
F so
s tio
I ak
s ca
e

t b
d

v d up
c tive
s f 0.3
H
1 in
t een
e ul-
t han
D rom
t first.
W the

e
i third),
w d
l l
s
T e to v
d nd 0.7
S
6
2

139DECONVOLUTION OF MULTIPLETS
hen scanned from the right-hand side, the maxima of the
ermost functions in Figs. 9g–9k that are higher than 0.5 are

n the next step of deconvolution. If no maxima are found foJ*
0.5 Hz, the process is stopped. The result is the single pe

ig. 9f. In the vertical dimension, the multiplet structure is
imple that one could determine the splittings by visual inspec
n the horizontal dimension, on the other hand, cancellation m
uch estimates hazardous. Deconvolution deals with both
qually well.
In soft-COSY multiplets, two independent variables mus

etermined for each passive spin, corresponding to thev1 and

FIG. 10. (a) Soft-COSY multiplet (353 61 Hz) correlating thed t andg t p
n cyclo-(L-Pro1-L-Pro2-D-Pro3) (II ), symmetrized with respect to itsC2 axis. (
ith an antiphase doublet in the verticalv1 dimensions (middle third), and

ines correspond to a deconvolution of the raw multiplet (not shown), wh
ix functions give an active coupling constant of 10.25 Hz. (c) Multiplet a
wo-dimensional map of the measure of symmetry after deconvolution o
isplacement vectors. Note the presence of local minima at submultiple
uccessive deconvolution of the splittings due to the spinsdc, gc, bc, andb t,
70% of the maximum peak height. In addition to the coupling constants
0.50 Hz andJ(d t, b t) 5 0.45 Hz. The uncertainty was 0.05 Hz.
p-
ed

of

n.
es
ses

e

2 components of the displacement vector. In order to spee
omputation, deconvolution is carried out in two consecu
teps. A first search is made at low resolution (in steps o
z) over a range218 , J* , 18 Hz in v1 and 0, J* ,
8 Hz in v2, followed by a refinement in steps of 0.05 Hz

he vicinity of the extrema after the digital resolution has b
nhanced by trigonometric interpolation. Soft-COSY m

iplets are less likely to suffer from cancellation effects t
QF-COSY multiplets. This means that one may deviate f

he rule requiring one to search for the largest coupling
e therefore propose to start with the deconvolution of

ons (in the verticalv1 and horizontalv2 dimensions, respectively) of prolin3

easure of symmetry after deconvolution with an antiphase square (top
an antiphase doublet in the horizontalv2 dimension (bottom third). The dotte

he continuous lines result from deconvolution of theC2-symmetrized multiplet. Al
deconvolution of the active coupling, symmetrized with respect to itsC2 axis. (d)
e passive splittings. The arrows indicate the positions of the minima duarious
f the displacement vectors. The contours were taken at 0.4, 0.5, 0.6, a. (e–h)
owed after each step byC2 symmetrization. Contours are drawn at620 and
icated in the coupling network (II ) one can determine small4J splittingsJ(d t, bc) 5
rot
b) M
with
ile t
fter
f th
s o
foll
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140 JEANNERAT AND BODENHAUSEN
plittings in the simplified multiplet.
This methodology is applied to a challenging soft-CO
ultiplet extracted from a spectrum ofD-Pro3 of cyclo-(L-Pro1-

-Pro2-D-Pro3) (18) with the following coupling network:

II

The determination of the active coupling, shown in Fig. 1
an be achieved successfully using any one of three cri
ymmetrization of the raw multiplet has a beneficial effec
ll criteria (from dashed to continuous lines in Fig. 10
wo-dimensional deconvolution (top frame in Fig. 10b) gi
axima that are less well defined because the imperfectio
oth dimensions tend to add up. Successive steps of
imensional deconvolution (middle and bottom frames in
0b) provide more pronounced extrema.
In an earlier publication (19), we applied deconvolution to 1

oft-COSY multiplets of Paclitaxel (Taxol) and compared res
ith those of convolution methods (20, 21). It turns out tha
econvolution is very effective in measuring small splittings
an be applied to all E-COSY type structures. A discussio
mall splitting in DQF-COSY multiplets is given elsewhere (8).
In conclusion, frequency-domain deconvolution appea

e an effective tool for analyzing multiplets containing b
ntiphase and in-phase splittings. The method is robust en

o allow fully automatic analysis of complex structures.
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